PHYSICAL REVIEW E 71, 062902 (2005)

Multiscale multifractality analysis of a 12-lead electrocardiogram
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This paper proposes that a multiscale multifractality (MSMF) method be adopted for the spatiotemporal
analysis of 12-lead ECG. By using this method, the authors find that, in some frequency range, 12-lead ECG
has a more complex fractal structure, and the position of the largest singularity strength range A« is not relying
on the data length but on the scale factor. By determining the inflexion, the MSMF proves to be more sensitive
in displaying the trend that the singularity strength range A« of human ECG decreases with human aging.
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The report of multifractal structure [1] has led to the ap-
plication of it in a number of fields such as condensed matter
[2], heartbeat signal analysis [3-6], etc. There is evidence
that physiological signals generated by complex self-
regulating systems may have a fractal structure. Ivanov et al.
[4] reported that time series of healthy human interbeat in-
tervals belong to a special class of complex signals that dis-
play multifractal properties. Ivanov et al. [4] and Amaral er
al. [6] both reported that the multifractal properties of heart
rate variability of the human body were mainly under the
control of the neuroautonomic system.

Wang et al. reported that the mean value of the areas of
multifractal singularity spectrum for 12-lead ECG of a hu-
man is mainly controlled by the strength of the body’s neu-
roautonomic control on the heart, but not the extent of heart
disease [7]. This research echoes the assumption of Ivanov et
al. [4] and Amaral et al. [6]. The synchronous 12-lead ECG
multifractal singularity spectrum distribution is modulated
by the heart disease information [8].

Zhang [9] proposed a general method to measure the mul-
tiple time scales in physical systems; based on Zhang’s re-
search, Costa et al. [10] proposed the multiscale entropy
(MSE) method. Stimulated by these two researches, the au-
thors in this paper propose a multiscale multifractality
(MSMF) method for the spatiotemporal analysis of physi-
ologic time series. The multifractality method analyzes the
dimensions of time series in different time segments but
misses the information in different time scaling domains.

Traditional analysis of physiological time series includes
many methods such as correlation dimension [11-13],
Lyapunov exponents [14], approximate entropy [15,16],
sample entropy [17], mode entropy [18], multiscale entropy
[19], multifractality [1,4,6], etc. In our understanding, any
single one of the parameters referred to in the abovemen-
tioned methods may be insufficient in revealing the hidden
information of the researched physiological and pathological
signals. The synthetic multiparameter presented in proposed
theories by many researchers can help to further understand-
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ing of the inner information of the physiological and patho-
logical system.

Given a one-dimensional discrete time  series,
{x/,...,x;,...,x5}, we construct the consecutive coarse-
grained time series of it, that is {y("},

1_.
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where 7 is the scale factor.

The length of each coarse-grained time series is equal to
the length of the original time series divided by the scale
factor 7[9,10]. In a case where =1, the time series {y"'} is
simply equal to the original time series.

The present research takes into account the case in which
55 440 points are primarily chosen as the time series where
the coarse-grained factor varies from 1 to 10, and thus cal-
culates the multifractality measure for each coarse-grained
time series [1,20]. This procedure is termed multiscale mul-
tifractality (MSMF) analysis and is used to produce the f(a)
[1] spectrum proposed by Chhabra and Jensen [20].

The measure chain is covered with segments of size L and
the probability P;(L) is calculated in each of these segments.
The multifractal formalism accounts for the statistical prop-
erties of some measure in terms of its distribution of the
singularity spectrum f(«) corresponding to its singularity
strength a.

In this research, probability P; is determined by:

P, =T,

l 1

N
> T (2)
i=1

where 7; is the mean of the ith segment. When the length of
the chain is divided into N equal small segments it can be
calculated by summing the measure in the ith segment.

The normalized gth moment of the probability measure P;
is determined by the following expression:

N
pla. L) =[PDY [ 2PV, (3)
j=1
where L is equal to N7,
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The Hausdorff dimension of the measure theoretic support
of u(g) is given by:

N

|
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In addition, the average value of the singularity strength
a;=In(P;)/In L with respect to u(g) can be determined by:

N

alg) == lim = g, Y[ P,(1)]
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- 2 milg.LIn[P(L)]
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Equations (4) and (5) indicate the relationship between a
Hausdorff dimension f and an average singularity strength
a;f and a both are functions of the parameter g. The singu-
larity strength « functions as a scaling exponent and f(a) as
the corresponding fractal dimension.

In our understanding, the multiscale multifractality
(MSMF) method has the following significance: coarse
graining the time series implies that the sampling frequency
of the coarse-grained time series is changing; calculating the
multifractality of the coarse-grained time series makes it pos-
sible to analyze the fractal dimensions in different time seg-
ments of that series.

Multiscale multifractality algorithm is tested by analyzing
65 ECG data sets, with the sampling frequency 1 kHz, taken
from healthy human subjects in rest condition. All data sets
utilize wavelet filtering (the wavelet function chosen is
bior6.8) for removing respiration wave (less than 0.5 Hz) and
50 Hz noise.
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FIG. 1. (a) Zu;ln u; vs In L with g from the

) top in the order of —10,-5, 0.5. (b) f(a)vs «
shows multifractal singularity spectrum of human
ECG signal.
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Consider several time series with 55440 points and
coarse grain them up to 10; every coarse-grained time series
is divided into many segments and each segment is com-
prised of just two points. The parameter g varies from — to
@ and the step varies in need.

All the data are processed by MATLAB software. Figure
1(a) shows an example of the linear fit to Zu;ln u; vs In L
with ¢ from the top in the order of —10,-5, 0.5. It shows that
there is no ambiguity in determining the slopes. The f value
remains unchanged as the time series are segmented (pro-
vided that L—0). This confirms that the multifactal singu-
larity spectrum [Fig. 1(b)] is reasonable [7,8]. Human ECG
is characterized by multifractal structure [7,8], which shows
the nonlinear complexity of heartbeat signals.

To verify this method, the authors use two-scale Cantor
sets, which have been confirmed multifractality [20]. The
Cantor sets are generated by dividing the unit interval into
two pieces, each being half the previous length. This process
is infinitely repeated [20] where the two halves are of differ-
ent probabilities (say pl and p2). In Fig. 2(a), p1=0.7000,
p2=0.3000; in Fig. 2(b), p1=0.6999, p2=0.3001. In Figs.
2(a) and 2(b) 55440 points are taken. The singularity
strength range A« is defined as the difference between the
maximum «,,,, and the minimum e«,,,. Figure 2 illustrates
that the singularity strength range A« is distributed along
with scale factors 7. There also exist highest singularity
strength range values in scale factor 3. This implies that the
multiscale multifractal method is effective in denoting the
scale factor, which shows the most complex fractal structure
of the researched time series.

Then take healthy human 55 440-point ECG for the mul-
tiscale multifractality (MSMF) analysis. Figure 3 shows the
results of three different subjects: the singularity strength
range A« reaches its maximum value when the scale factor 7
equals 4 in Fig. 3(a), equals 5 in Fig. 3(b), and 6 in Fig. 3(c).
It is found that when the scale factor is from 4 to 6, the
singularity strength range Aa of 12-lead ECG is larger than

(b)

FIG. 2. Singularity strength range A« vs scale
5 factor 7 [(a) p1=0.7000, p2=0.3000; (b) pl
=0.6999, p2=0.3001].
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that in other cases. This shows that the distribution of the
singularity strength range A« is higher in the middle but
lower on both sides (Fig. 3).

Apply the MSMF method to 65 subjects with a 55 440-
point ECG. The scale factor 7 with the maximum singularity
strength range A« is from 3 to 8, the corresponding number
is, respectively, 3, 15, 30, 10, 4, and 3. This implies that, in
most cases, the scale factor 7 is able to denote the maximum
singularity strength range A« when 7equals 4, 5, or 6. It also
implies that the appropriate sampling frequency is very im-
portant for analyzing the multifractal structure of a 12-lead
ECG. It is thus concluded that a 12-lead ECG has a more
complex fractal structure in a certain frequency range.

All the above data were sampled with the frequency 1
kHz. The coarse-grained time series were reconstructed un-
der different sampling frequencies (coarse-grained sampling
frequency), which were obtained by the original sampling
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(b)

FIG. 3. Curves of the singularity strength
range A« vs scale factor 7 for 55 440-point data
[(@) =4, (b) 7=5, (c) 7=6].

frequencies divided by the scale factor. When the scale factor
is from 4 to 6, the corresponding coarse-grained sampling
frequency varies from 250 to 166 Hz. While for the ECG,
most sensitive physiologic information is obtained when
coarse-grained sampling frequency is in the region of 250-
166 Hz. This indicates that not all of the sampling frequency
is applicable to analyzing the multifractal structure of physi-
ologic time series. By reconstructing the coarse-grained time
series, the frequency region, which most effectively express-
ing the multifractal structure of physiologic time series, can
be determined.

To further confirm the above conclusion, the authors ap-
plied the MSMF method to three more sets of 40 320-point
ECG data for the same subjects as mentioned in Fig. 3. They
were coarse grained up to scale 10. The authors then calcu-
lated the singularity strength range A« of the coarse-grained
series in the same way as described above.

b

C 1 FIG. 4. Curves of the singularity strength
range A« vs scale factor 7 for 40 320-point data

[(a) =4, (b) 7=5, (c) 7=6].
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Figure 4 shows that A« has the same distribution as that
in Fig. 3. Distribution is higher in the middle but lower in the
both sides. Contrasting Figs. 4(a)-4(c) with Figs. 3(a)-3(c)
further proves that the scale factors with the maximum sin-
gularity strength ranges A« bears no relation with data
length. This implies that for each 12-lead ECG data the
maximum singularity strength range A« is not relying on the
data length but on the scale factor. This also proves the sig-
nificance of the multiscale multifractality method.

Apply the MSMF method to the 55 440-point ECG data.
It is reported that the mean value of the areas of the multi-
fractal singularity spectrum for 12-lead ECG of a human is
mainly controlled by the strength of the body’s neuroauto-
nomic control on the heart, but not the extent of heart disease
[7]. This research echoes the assumption of Ivanov et al. [4]
and Amaral et al. [6].

Applying the MSMF method to 65 healthy subjects with
55 440-point ECG and determining the relation between A«
and the age of the subjects was done by calculating the sin-
gularity strength range A« of the above data. Figure 5 shows
that the scale factor is more sensitive when 7=4 [Fig. 5(b)]
than 7=1 [Fig. 5(a)] in accounting for the trend that the
singularity strength range A« of human ECG decreases as
the tested subject ages. In the case where the scale factor is
larger than 4, the decreasing trend is insignificant. This
proves that the scale factor 4 is an important inflexion. This
confirms that the determination of an appropriate sampling
frequency is of vital importance to the analysis of the multi-
fractality structure of a 12-lead ECG.

In Figs. 5(a) and 5(b), the linear regression method was
adopted to examine the confidence intervals of the singular-
ity strength ranges A« of the 65 ECG data, to confirm that
Aa is correlated with y,g.

In the case of 7=1,

T
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FIG. 5. Singularity strength range A« of
healthy human ECG varies according to age [age
unit is year., (a) 7=1; (b) 7=4: In the (b), parallel
is given to show the trend.]

(6)

where a,;=0.2001, b, =-0.0003; and when the confidence is
0.95,

AaTl =a;+by* Yage

Co, = (0.1934,0.2068),

Cbrl = (- 0.0005,-0.0002).
In the case of 7=4,

(7)

where a,4,=0.2186, b,,=-0.0003; and when the confidence is
0.95,

A6(7'4=aq'4+b7'4*yage

Co,= (0.2111,0.2261),

Cy, = (= 0.0005,- 0.0002).

This research establishes that the awareness of appropri-
ate sampling frequency is of vital importance in analyzing
the multifractal structure of a 12-lead ECG and that, in a
certain frequency range, a 12-lead ECG has a more complex
fractal structure. For a 12-lead ECG the position of the maxi-
mum singularity strength range A« is not relying on the data
length but on the scale factor. It is also found that by deter-
mining the inflexion, the MSMF proves to be more sensitive
in displaying the trend that the singularity strength range A«
of an ECG of a human decreases with aging.
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